Compound and Solid-Solution Formation in the System $Li_2O-Nb_2O_5-TiO_2$

M. E. VILLAFUERTE-CASTREJÓN, A. ARAGÓN-PIÑA, R. VALENZUELA, and A. R. WEST*

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México 04510, D.F.

Received January 27, 1986; in revised form January 22, 1987

A systematic study of compound and solid-solution formation in the system $Li_2O-Nb_2O_5-TiO_2$ has been made. Several solid-solution series, based on LiNbO₃, $LiNb_3O_8$, $Li_2Nb_{28}O_{71}$, Li_2TiO_3 , phase M, $Li_2Ti_3O_7$, and TiO₂, have been characterized. In all cases, the principal solid-solution mechanism appears to involve stoichiometric formulae with constant overall cation content. One new phase, of approximate formula $Li_{13}TiNb_5O_{21}$, has been prepared. A subsolidus phase diagram for the ternary system is presented. @ 1987 Academic Press, Inc.

Introduction

The title system contains a number of well-characterized binary compounds. Of these, LiNbO₃ is an important material with applications in optoelectronics (1-3); its properties may be modified by incorporating a certain amount of Ti⁴⁺ into the structure (4, 5). Li₂Ti₃O₇ has possible applications as a Li⁺ ion-conducting solid electrolyte, especially at elevated temperatures (6, 7). TiO₂ has various applications, including use as an electrode material if its electronic characteristics can be modified suitably (8-12). Preliminary studies on the system Li₂O-Nb₂O₅-TiO₂ have led to the synthesis of various new materials, including extensive rutile solid solutions. $Ti_{1-4x}Li_xNb_{3x}O_2, 0 < x < 0.17$ (13), LiNb₃O₈

solid solutions, $\text{Li}_{1-x}\text{Nb}_{3-3x}\text{Ti}_{4x}O_8$, $0 < x \le 0.06$ (13), Li_2TiO_3 solid solutions, $\text{Li}_{2+x}\text{Nb}_{3x}\text{Ti}_{1-4x}O_3$, $0 < x \le 0.22$, which exhibit an ordering-disordering transition (14), and a new phase, M, $\text{Li}_{1+x}\text{Nb}_{1-x}\text{Ti}_xO_3$, 0.10 < x < 0.33, with a distorted LiNbO₃ structure (15).

The three bounding binary systems have all been well-studied and phase diagrams are available for each. In the system Li₂O- Nb_2O_5 , the most recent phase diagrams (16, 17) show the existence of the phases Li₃NbO₄, LiNbO₃ with a range of stoichiometry from 50 to \sim 56.5 mole% Nb₂O₅, LiNb₃O₈, and Li₂Nb₂₈O₇₁. The phase diagram for the system Li₂O-TiO₂ (18) shows the phases Li₄TiO₄, Li₂TiO₃ with a range of stoichiometry at high temperatures extending from \sim 44 to 66 mole% TiO₂, Li₄Ti₅O₁₂, and Li2Ti3O7 with a narrow range of stoichiometry between 74 and 76% TiO₂. The phase diagram first reported for the system $Nb_2O_5-TiO_2$ (19) shows the formation of

^{*} Permanent address: University of Aberdeen, Department of Chemistry, Meston Walk, Aberdeen AB9 2UE, UK.

 Nb_2O_5 solid solutions containing up to 5 to 10% TiO₂ and the phases Nb₂TiO₇, Nb₆TiO₁₇, and TiO₂ solid solutions containing up to $\sim 15\%$ Nb₂O₅. In a more recent study of Nb₂O₅-rich compositions (20), the phase Nb_6TiO_{17} is replaced by the phase Nb₁₀Ti₂O₂₉, in accordance with crystallographic studies on the latter compound (21). The high-temperature phase, Nb_6Ti_2 O_{19} , is also reported (20), with a lower limit of stability at 1425°C. Further modifications are made in the latest Nb₂O₅-TiO₂ phase diagram (22). These show very little solid solution of TiO2 in Nb2O5 but instead formation of the phase $TiNb_{24}O_{62}$ (23). However, no recognition of the phase Nb₆ Ti_2O_{19} (20) is made in this phase diagram (22).

Systematic studies on the ternary system $Li_2O-Nb_2O_5-TiO_2$ have been limited to the three joins mentioned above, TiO₂- $LiNb_3O_8$ (13), $Li_2TiO_3-Li_3NbO_4$ (14), and $Li_2TiO_3-LiNbO_3$ (15), and a study of LiNbO₃ solid solutions on the join $LiNbO_3$ -TiO₂ (24). In this latter study, a partial phase diagram for the join was given, together with the results on the composition dependence of the lattice parameters and ferroelectric Curie temperature of the LiNbO₃ solid solutions. The present paper reports the results of a comprehensive study of compound and solid-solution formation in the ternary system Li₂O-Nb₂O₅-TiO₂ for all compositions with the exception of those rich in Li₂O.

Experimental

Starting materials were Li_2CO_3 (reagent grade), Nb₂O₅ (99.9%, Aldrich), and TiO₂ (99.2%, Baker). Mixtures totalling 5 to 10 g were prepared by weighing, mixing into a paste with acetone in an agate mortar, drying, and firing in Pt crucibles or Au foil boats; Au was used for compositions containing >50% Li₂O. The mixtures were fired in electric muffle furnaces whose tem-

peratures were controlled and measured to $\pm 30^{\circ}$ C. Initial firing was at 600 to 700°C for a few hours to expel CO₂ followed by ~900°C for 12-48 hr. After grinding, the samples were finally fired at temperatures in the range 900 to 1200°C for 24-72 hr, depending on composition. Careful checks were made to ensure that lithia loss by evaporation did not occur to an appreciable extent, especially for the more lithia-rich compositions.

The products of reaction were identified by X-ray powder diffraction using a Siemens D500 diffractometer, CuK_{α} radiation.

Results

The results of heating experiments on more than 130 compositions, given in an unpublished table,¹ were used to construct the phase diagram given in Fig. 1. This diagram pertains to subsolidus temperatures of ca. 1050 to 1150°C. The phase diagram at lower temperatures is expected to show certain differences, as discussed later. At higher temperatures, 1200 to 1300°C, most compositions are expected to show at least partial melting. The exceptions are those compositions close to the Nb₂O₅-TiO₂ join, most of which are expected to melt at considerably higher temperatures. No systematic study of the melting behavior has been made, apart from that reported previously for the binary joins Li₂TiO₃-Li₃NbO₄ (14) and Li₂TiO₃- $LiNbO_3$ (15). The various crystalline singlephase regions in the ternary system are now discussed in turn.

LiNbO₃ Solid Solutions

LiNbO₃ is an unusual material in that it exists on the join Li₂O-Nb₂O₅ as a solidsolution series over the composition range 50 to 56.5% Nb₂O₅ (2, 25), with a congruently melting composition at 51.4% Nb₂O₅.

¹ Available from the authors on request.

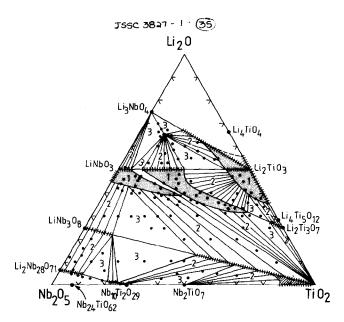


FIG. 1. Phase diagram for the system $Li_2O-Nb_2O_5-TiO_2$ at ca. 1100°C (in mole%). The compositions studied are marked with solid circles. Compositions to the lithia-rich side of the join $Li_3NbO_4-Li_2TiO_3$ were not studied. Studies in the Nb₂O₅-rich corner were inconclusive and these results have been omitted.

Limited ranges of LiNbO₃ solid solutions have been prepared on the joins LiNbO₃– Li₂TiO₃ (15) and LiNbO₃–TiO₂ (24). Our new results show that, in the ternary system, an extensive, wedge-shaped solidsolution area forms (Fig. 1). This solid solution is most extensive in the direction of the hypothetical compound "Li₂Ti₄O₉," as emphasized in Fig. 2. On the join $LiNbO_3$ -" $Li_2Ti_4O_9$," the solid-solution mechanism is such that the total cation content remains constant, viz.,

$$Li + 3Nb \rightleftharpoons 4Ti.$$

This gives the solid-solution formula Li_{1-x}

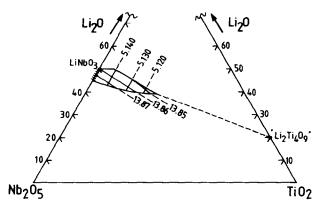


FIG. 2. The LiNbO₃ solid-solution field (in mole%), most extensive in the direction of the hypothetical compound "Li₂Ti₄O₉." Contours of constant lattice parameter are marked for a (5.140 to 5.120 Å) and c (13.85 to 13.87 Å).

 $Nb_{1-3x}Ti_{4x}O_3$. The range of x is found experimentally to be 0 < x < 0.10.

The lattice parameters of a selection of LiNbO₃ solid-solution compositions have been measured and used to determine the contours of constant lattice parameter content, as indicated in Fig. 2. The hexagonal *a* parameter shows a gradual decrease with increasing TiO₂ content. The *c* parameter behaves quite differently and the contours run approximately parallel to the LiNbO₃-TiO₂ join.

The results reported in (24) were for the join LiNbO₃-TiO₂ and are largely consistent with our studies on the complete area of LiNbO₃ solid solutions. From Figs. 1 and 2, the LiNbO₃ solid solutions on the join LiNbO₃-TiO₂ extend to the approximate composition 40 mole% Li₂O, 40% Nb₂O₅, 20% TiO₂. When these solid solutions are written in the form LiNbO₃ · xTiO₂, the 40:40:20 composition corresponds to a value of x of 0.25. The limiting value of x given in (24) is somewhat less, i.e., 0.205.

LiNb₃O₈ Solid Solutions

These are described in (13) and have not been studied further. They are shown in Fig. 1 as a hatched line extending part way along the join $LiNb_3O_8$ -TiO₂. Again, it should be noted that these solid solutions have a replacement mechanism which retains a constant total cation content.

Li₂Nb₂₈O₇₁ Solid Solutions

There was some evidence to suggest that $Li_2Nb_{28}O_{71}$ forms a limited range of solid solutions in the ternary system. The results are consistent with the same replacement mechanism, giving constant overall cation content, that was found for the solid-solution series involving LiNbO₃ and LiNb₃O₈ described above and for the solid solutions of TiO₂ and Li₂Ti₃O₇ discussed later. For the Li₂Nb₂₈O₇₁ solid solutions, this mechanism gives rise to the solid-solution formula $Li_{2-x}Nb_{28-3x}Ti_{4x}O_{71}$ and

for which the experimental range of x values is 0 < x < 0.43. The theoretical limit for this solid-solution series occurs when x = 2 and corresponds to the composition of the hypothetical phase "11Nb₂O₅ · 8TiO₂."

Rutile Solid Solutions

Extensive rutile solid solutions on the join $TiO_2-LiNb_3O_8$ were reported in (13) and a more limited range on the join $Nb_2O_5-TiO_2$ in (19). These two series probably link up to form a limited area of ternary solid solutions, bounded approximately by the dashed line shown in Fig. 1, although direct experiments to confirm this have not been made.

Li₂Ti₃O₇ Solid Solutions

A limited range of Li₂Ti₃O₇ solid solutions forms with the probable replacement mechanism $4\text{Ti}^{4+} \rightleftharpoons \text{Li}^+ + 3\text{Nb}^{5+}$ and formula Li_{2+x}Nb_{3x}Ti_{3-4x}O₇, $0 < x \le 0.08$. The hypothetical end-member of this series is the nonexistent phase "11Li₂O · 9Nb₂O₅."

Li₂TiO₃ Solid Solutions

An extensive area of ternary Li_2TiO_3 solid solutions forms at high temperatures, in agreement with previous studies on the joins Li_2O-TiO_2 (18), $Li_2TiO_3-Li_3NbO_4$ (14), and $Li_2TiO_3-LiNbO_3$ (15). Detailed studies on the variation of the low \Rightarrow high polymorphic transition temperature with composition have not been made for the ternary system but could be estimated by combining data for the various joins mentioned above.

Phase M Solid Solutions

Phase M is the solid-solution phase Li_{1+x} Nb_{1-x}Ti_{1+x}O₃, 0.10 < x < 0.33, first prepared on the join Li₂TiO₃-LiNbO₃ (15). Studies on the ternary system show it to form a very extensive, wedge-shaped area of ternary solid solutions. These solid solutions may also, in large part, be derived by the replacement mechanism Li⁺ + 3Nb⁵⁺

 \Rightarrow 4Ti⁴⁺; for instance, one edge of the solid-solution field runs parallel with the Li₂Ti₃O₇ solid solutions described above. Structural information on these solid solutions is unfortunately lacking since, as yet, we have been unable to prepare single crystals of a size suitable for X-ray work. At the LiNbO₃-rich limit, the powder X-ray pattern of the solid solutions is quite similar to that of LiNbO3 and hence a strong structural similarity between the M solid solutions and LiNbO₃ is suspected. With increasing Li₂TiO₃/TiO₂ content, major but apparently continuous changes in the X-ray powder patterns occur, as depicted for a selection of compositions in Fig. 3. Since the changes are large, it is possible that a series of structurally related phases exists, rather than a single homogeneous solidsolution series.

Phase C, "Li₁₃TiNb₅O₂₁"

This is a new lithia-rich phase stable only at high temperatures, $\geq 900^{\circ}$ C. Its composi-



FIG. 3. A selection of X-ray line diagrams for different phase M solid-solution compositions. For each, the composition is given in terms of the oxide molar ratio.

tion has not been determined with certainty due to (i) problems of lithia volatilization on heating lithia-rich compositions for extended periods $>1000^{\circ}$ C and (ii) the slow rate of formation of this new phase. Its composition is most likely to be 65Li₂O · $10TiO_2 \cdot 25Nb_2O_5$ or $Li_{13}TiNb_5O_{21}$. In order to reduce lithia loss, pelleted samples were immersed in presintered powder of the same composition and wrapped in Pt foil bags; after heat treatments the pellets were separated from the surrounding powder and analyzed by X-ray powder diffraction. The decomposition of phase C at temperatures ≈900°C takes place relatively slowly and hence phase C may be quenched readily to ambient temperatures, where it is kinetically stable. Unindexed X-ray powder data are given in Table I.

Subsolidus Compatibility Relations at ~1100°C

Apart from the eight ternary phases/ solid-solution series outlined above, all remaining compositions on the lithia-deficient side of the join $Li_3NbO_4-Li_2TiO_3$ give a mixture of either two or three of these eight phases, as indicated in Fig. 1. The Nb₂O₅rich corner has not been determined in detail and is left blank.

Subsolidus Compatibility Relations at $\leq 950^{\circ}C$

Detailed studies of the phase relations at lower temperatures have not been made but some differences must inevitably be present. Thus,

 $-Li_4Ti_5O_{12}$ is a thermodynamically stable phase at temperatures <1025°C and should therefore be observed in some ternary compositions.

 $-Li_2Ti_3O_7$ is unstable $\leq 950^{\circ}C$ and should be absent from the diagram, unless the effect of the solid-solution formation is to stabilize $Li_2Ti_3O_7$ to much lower temperatures.

TABLE I

X-RAY Powder
DIFFRACTION DATA FOR
Phase C, "Li ₁₃ TiNb ₅ O ₂₁ "

dª (Å)	I
6.524	23
6.159	14
4.477	4
3.761	5
3.691	31
3.487	19
3.261	20
2.882	18
2.781	5
2.632	7
2.439	17
2.381	4
2.284	2
2.238	3
2.110	100
2.047	2
1.954	5
1.880	4
1.807	3
1.773	2
1.571	6
1.487	41
1.448	4
1.273	2
1.217	5

^{*a*} Internal standard for *d* measurements was NaCl.

—The Li₂TiO₃ solid solutions are considerably less extensive at lower temperatures, below the temperature of the low \rightleftharpoons high transition.

—Phase C is unstable $\leq 950^{\circ}$ C and should be absent from the diagram.

Acknowledgments

We thank the British Council for supporting the Aberdeen-Mexico collaboration programme and L. Baños for help with the X-ray diffraction analyses.

References

1. B. T. MATTHIAS AND J. P. REMEIKA, *Phys. Rev.* **76**, 1886 (1949).

- 2. P. LERNER, C. LEGRAS, AND J. P. DUMAS, J. Cryst. Growth 3/4, 231 (1968).
- 3. G. E. PETERSON, A. A. BALLMAN, P. V. LENZO, AND P. M. BRIDENBAUGH, *Appl. Phys. Lett.* 5, 62 (1964).
- 4. R. V. SCHMIDT AND I. P. KAMINOW, Appl. Phys. Lett. 25, 458 (1974).
- 5. K. SUGII, M. FUKUMA, AND H. IWASAKI, J. Mater. Sci. 13, 523 (1978).
- 6. J. B. BOYCE AND J. C. MIKKELSEN, JR., Solid State Commun. 31, 741 (1979).
- J. B. BOYCE, J. C. MIKKELSEN, JR., AND B. A. HUBERMAN, Solid State Commun. 29, 507 (1979).
- 8. M. ITAKURA, N. NÜZEKI, H. TOYODA, AND H. IWASAKI, Japan. J. Appl. Phys. 6, 311 (1967).
- 9. O. W. JOHNSON AND G. R. MILLER, Ceram. Bull. 56, 706 (1977).
- A. FUJISHIMA AND K. HONDA, Nature (London) 238, 38 (1972).
- D. W. MURPHY, R. J. CAVA, S. M. ZAHURAK, AND A. SANTORO, Solid State Ionics 9/10, 413 (1983).
- L. BROHAN AND R. MARCHAND, Solid State Ionics 9/10, 419 (1983).
- 13. J. A. GARCÍA, M. E. VILLAFUERTE-CASTREJÓN, J. ANDRADE, R. VALENZUELA, AND A. R. WEST, Mater. Res. Bull. 19, 649-654 (1984).
- 14. A. ARAGÓN-PIÑA, M. E. VILLAFUERTE-CAST-REJÓN, R. VALENZUELA, AND A. R. WEST, J. Mater. Sci. Lett. 3, 893 (1984).
- M. E. VILLAFUERTE-CASTREJÓN, J. A. GARCÍA, E. CISNEROS, R. VALENZUELA, AND A. R. WEST, *Trans. J. Brit. Ceram. Soc.* 83, 143 (1984).
- 16. R. S. ROTH, H. S. PARKER, W. S. BROWER, AND J. L. WARING, in "Fast Ion Transport in Solids, Solid State Batteries and Devices" (W. van Gool, Ed.), p. 217, North-Holland, Amsterdam (1973).
- L. O. SVAASAND, M. ERIKSRUD, A. P. GRANDE, AND F. MO, J. Cryst. Growth 18, 179 (1973).
- G. IZQUIERDO AND A. R. WEST, Mater. Res. Bull. 15, 1655 (1980).
- 19. R. S. ROTH AND L. W. COUGHANOUR, J. Res. Nat. Bur. Stand. 55, 211 (1955).
- 20. A. JONGEJAN AND A. L. WILKINS, J. Less-Common Met. 19, 186 (1969).
- 21. A. D. WADSLEY, Acta Crystallogr. 14, 664 (1961).
- R. S. ROTH, Prog. Solid State Chem. 13(2), 159– 192 (1980).
- R. S. ROTH AND A. D. WADSLEY, Acta Crystallogr. 18(4), 724-730 (1965).
- 24. B. GUENAIS, M. BAUDET, M. MINIER, AND M. LE CUN, Mater. Res. Bull. 16, 643 (1981).
- J. R. CARRUTHERS, G. E. PETERSON, M. GRASSO, AND P. M. BRIDENBAUGH, J. Appl. Phys. 42, 1846 (1971).